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In the present paper the general equation and algorithm to derive interfacial forces, acting
on phases, situated in the bulk, or at the interface of other phases are given. Based on that,
interfacial forces are classified into the following six major types: (i) the “curvature induced
interfacial force” (due to Laplace), (ii) the “interfacial gradient force”, acting on particles in
inhomogeneous fluid phases, due to composition-, temperature- and electrical potential
gradient (known as Marangoni force, or thermocapillary force), (iii) the “interfacial capillary
force”, acting on a phase at an interface of two large phases, including the behaviour of
solid particles at the liquid/gas, fluid/fluid and solid/solid interfaces (known as the capillary
force, and as the Zener pinning force), (iv) the “interfacial meniscus force,” acting between
two, solid phases, situated at a curved fluid/fluid or solid/solid interface, the curvature
being due to the gravitational or electric fields (known also as the lateral capillary force, or
electrodipping force), (v) the “liquid bridge induced interfacial force,” acting between two,
solid particles, due to the liquid bridge of small volume between them, and (vi) the
“interfacial adhesion force,” acting between two particles in a homogeneous fluid phase
(with the phenomenological Derjaguin- and Hamaker constants, re-visited).
C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Interfacial phenomena play an increasing role in ma-
terials science and technology, as materials production
is shifting from the requirement to control phenomena
at the mm- and µm-level, towards the requirement to
control the phenomena at the nm-level.

The majority of interfacial phenomena are connected
with the individual movement of small solid particles,
liquid droplets or gaseous bubbles in the bulk of a larger
phase, or along, and/or across the interface between
two other phases. In order to understand and control
such phenomena, the interfacial forces, acting on these
phases should be known, and coupled with other forces,
such as gravity, buoyancy, drag, etc. The goal of this
paper is to present a general algorithm to derive all
possible kinds of interfacial forces, acting on separate
phases. In addition to a general equation on interfacial
forces, six major types of different specific interfacial
forces will be classified, being different due to different
situations of the phase, at which those forces act. Some
of the simplified equations of this paper will be given for
spherical, rigid particles, allowing some mathematical
simplifications. However, the six types of forces will
act on any phase, regardless of its state (solid, liquid,
gas) and shape. It should be mentioned, however, that
non-rigid phases might change their shapes under the
influence of the interfacial (or other) force, what, on the

other hand, will alter the magnitude of the interfacial
force.

2. The general equation to derive
interfacial forces

Imagine a system, consisting of any number of phases.
Let us consider the interfacial force, acting at an ar-
bitrary chosen phase in an arbitrary chosen direction,
x. The equation for the interfacial force can be ob-
tained in the following way. First, the total interfacial
energy of the system should be described as function of
parameter x:

Gσ =
∑

i,j

Ai/j · σi/j (1)

where i and j are numbers, denoting different phases,
σi/j is the interfacial energy between them (J/m2), Ai/j

is the interfacial area between them (m2) and Gσ is the
total interfacial energy of the system (J ).

Then, following Newton and Gibbs, the interfacial
force, acting on the chosen phase in direction x can
be obtained as a derivative of Gσ by x, taken with a
negative sign:

Fσ,x = −dGσ

dx
(2)
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The negative sign follows from the sign convention
of thermodynamics, saying that spontaneous processes
take place along paths with some negative change of
the Gibbs energy. When the interfacial force appears to
be positive from Equation 2, its direction (as a vector)
is the same as that of vector x , and vice versa.

Substituting Equation 1 into Equation 2, the follow-
ing general equation can be obtained:

Fσ,x = −
∑

i,j

σi/j · dAi/j

dx
−

∑

i,j

Ai/j · dσi/j

dx
(3)

As follows from Equation 3, the interfacial force
might appear for two reasons: due to the change of
any interfacial energy, or of any interfacial area in the
system, while the studied phase moves along the path
x. If none of these quantities change along the path
of the studied phase, the interfacial force, acting on
this phase equals zero. Equation 3 is applicable only, if
along the considered path x the interfacial Gibbs energy
of the system is a continuous function of x, i.e. if there
is no break on the Gσ (x) curve.

3. The “curvature induced interfacial force”
(the Laplace equation)

Let us consider a spherical phase 1 of radius x in an
infinitely large, homogeneous fluid phase 2. Let the ra-
dius of the sphere increase infinitely slowly, without
changing the bulk energy of the system. Then, the only
1/2 interface of the system will have a constant inter-
facial energy, but a variable interfacial area. Therefore,
Equation 3 will have only one of the first terms. Sub-
stituting A1/2 = 4.π .x2 for a sphere, performing the
derivation and dividing the resulting interfacial force
by the same expression for A1/2, the following equa-
tion for the “curvature induced interfacial pressure” is
obtained:

Pcurv
σ,x ≡ Fcurv

σ,x

A1/2
= −2 · σ1/2

x
(4)

Equation 4 is the classical, 200-years old equation
of Young and Laplace for a sphere [1–2] (see also [3]).
The minus sign indicates that the interfacial pressure
acts from outside towards the centre of the sphere,
along its interface. This “curvature induced interfacial
force” acts only due to the existence of the curved inter-
face, and non-zero interfacial energy. Equation 4 is de-
rived here for two reasons. First, to demonstrate that the
well-known Laplace equation follows from the general
Equation 3. Second, to show that the Laplace equation
is not the basis for all other interfacial forces, it is just
one of the consequences of a most general Equation 3.
It should be mentioned that the force considered here
is a general force acting on the interface to ensure both
mechanical and chemical equilibrium of the system.

4. The “interfacial gradient force”
Let us consider phase 1 of a constant size and shape,
moving inside of an infinitely large, inhomogeneous

phase 2. The temperature-, composition- and electric
potential inhomogeneities in phase 2 might cause the
variation of the interfacial energy along path x:

dσ1/2

dx
= dσ1/2

dT
· dT

dx
+

∑

i

dσ1/2

dxi
· dxi

dx
+ dσ1/2

dE
· dE

dT

(5)

where T is temperature, xi is mole fraction of compo-
nent i in phase 2, E is electric potential. As along the
path of phase 1 its interfacial area A1/2 remains con-
stant, only the second term of Equation 3 will be effec-
tive in this case. Then, the “interfacial gradient force”
will equal:

Fgrad
σ,x = −A1/2 · dσ1/2

dx
(6)

The ‘minus’ sign in Equation 6 indicates that the
force is pointed towards the region of phase 2 with
lower interfacial energy (usually of higher tempera-
ture and with higher concentration of interface active
components).

Generally the temperature- and composition gradient
in phase 2 (in absence of phase 1) is different from
that along the interface of phases 1 and 2 (in presence
of phase 1). Thus, for a spherical particle of radius r
Equation 6 becomes:

Fgrad
σ,x = −k · π · r2 · dσ1/2

dx
(6a)

where in ideal case k = 4, but generally k is a func-
tion of other physical parameters and hydrodynamic
conditions around (and inside for a fluid) phase 1. Par-
ticularly, eddies might form behind a moving solid
spherical particle, what might mix phase 2, and thus
the composition gradient will be active only along the
front surface of the sphere, and so k = 2 is applica-
ble for this case. Parameter k will be a function of the
ratio of heat conductivity of phases 1 and 2, when the
interfacial energy gradient is caused by a temperature
gradient.

The interfacial gradient force was introduced into
the metallurgical literature by Mukai and Lin [4] with
k = 8/3, who also performed very precise experimental
measurements [5]. Parameter k was later modified to
k = 4 for an ideal case [6] and to k = 2 for the particular
case [7]. An equation with k = 2 was derived in an
implicit form much earlier for bubbles in a temperature
gradient field [8, 9] (see also experimental verification
[10,11]).

The “interfacial gradient force”, discussed in this
chapter was called also “Marangoni force” [10, 12,
13]. Indeed, the Marangoni convection is also driven
by a gradient in the interfacial energy. However, the
Marangoni convection starts along the fluid/fluid inter-
face, and is directed towards places with higher inter-
facial energy along the interface. In our case the par-
ticle (droplet, bubble) is situated in the bulk of a fluid
phase, and it is moved towards places with lower inter-
facial energy. That is why the difference between the
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Marangoni force and the “interfacial gradient force”
is essential. The “interfacial gradient force” was also
called “thermocapillary force” for the case when it is in-
duced by temperature gradient [14]. In this specific case
the present author suggests to use the term “tempera-
ture gradient induced interfacial gradient force”. Al-
ternatively, the terms “concentration gradient induced
interfacial gradient force” and “electric potential gra-
dient induced interfacial gradient force” are suggested.
The temperature gradient induced interfacial gradient
force was recently exploited to produce egg-type [12]
and core-type [13] composite microstructures in mono-
tectic alloys.

5. The “interfacial capillary force”
Let us consider a rigid phase 3, situated at the inter-
face of two fluid phases 1 and 2 (at depth of immer-
sion x in phase 1), and transferring with an infinitely
small velocity from phase 2 into phase 1 (see Fig. 1).
During this process the three interfaces will gradually
change, hence Equation 1 will include the following
three terms:

Gσ = A1/2 · σ1/2 + A1/3 · σ1/3 + A2/3 · σ2/3

= A1/2(x) · σ1/2 + Ao
3 · σ2/3

+ A1/3(x) · (σ1/3 − σ2/3) (7)

where A1/2(x) is the x-dependent fluid/fluid interface
area, Ao

3 is the total surface area of phase 3 and A1/3(x)
is the x-dependent interfacial area between phases 1
and 3.

Substituting Equation 7 into Equation 2 and perform-
ing the derivation, the general equation can be derived
for the “interfacial capillary force”, acting on phase 3,
in a perpendicular direction to the fluid/fluid interface
of phases 1 and 2:

Fcap
σ,x = (σ2/3 − σ1/3) · dA1/3(x)

dx
− σ1/2 · dA1/2(x)

dx
(8a)

In the particular case, when 1 = liquid, 2 = gas, 3 =
solid, Equation 8a can be re-written applying the Young

Figure 1 A rigid particle 3 (solid), situated at the interface of phases 1
(liquid) and 2 (gas).

equation, as:

Fcap
σ,x = σl/g ·

[
dAs/l

dx
· cos � − dAl/g

dx

]
(8b)

where �—the contact angle of the liquid on the solid
in the gas environment.

Equation 8a–b can be applied to particles, droplets
and bubbles of any shape. When the particle is fixed, the
same Equation 8b can be applied for the force, pulling
the liquid on the surface of the particle. When the solid
phase 3 is taken as a cylindrical capillary, Equation 8b
transforms into the well-known Laplace equation of the
capillary pressure (see [15]). The same equation can be
used to reproduce and improve further the Carman-
equation [15,16] of penetration.

When phase 3 is a solid, spherical particle of radius
r, the following equations are valid: A1/2 = Ao

1/2 −2 ·r ·
π ·x +π ·x2 (Ao

1/2 is the total 1/2 interface area), A1/3 =
2·r ·π ·x . Substituting these equations into Equation 8a,
the following general equation is obtained:

Fcap
σ,x = 2 · r · π · σ1/2 ·

[
1 + σ2/3 − σ1/3

σ1/2
− x

r

]
(9a)

For the particular case when a solid particle 3 is sit-
uated at a liquid/gas interface, Equation 9a can be re-
written, as:

Fcap
σ,x = 2 · r · π · σl/g ·

(
1 + cos � − x

r

)
(9b)

An equation, similar to Equation 9b was derived by
different authors independently several times [17–20].
It should be mentioned that during the last decades there
were also papers in the literature with different and
incorrect equations, published for the same situation.

In the absence of other forces, the particle reaches
its equilibrium at the liquid/gas interface when the in-
terfacial capillary force equals zero. Substituting this
condition into Equation 9b, the equilibrium depth of
immersion of the particle equals:

xeq = r · (1 + cos �) (10a)

As follows from Equations 9b–10a, the interfacial
capillary force always tends to return the spherical par-
ticle into its equilibrium position, if its actual position
is different from that. Moreover, the interfacial force in-
creases with the deviation of the actual position of the
particle from its equilibrium position. In other words,
the interfacial capillary force acts as an “elastic stabi-
lizer”, or as a “spring”. This unique property of this
force is what is behind the ability of small solid par-
ticles to stabilize liquid foams [21–24] and emulsions
[25]. The same force will stabilize small solid particles
at the liquid/gas interface even if the density of the par-
ticles is larger than that of the liquid. The critical size
of the particles to detach from the liquid/gas interface
was calculated and compared with experiments in [20,
26–27].
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When phase 3 is a solid, spherical particle of radius r,
situated at the grain boundary of solid grains 1 and 2,
Equation 9a is applicable. When the two neighbouring
grains 1 and 2 are identical (both in composition and
orientation), σ2/3 = σ1/3, the maximum interfacial cap-
illary force at x = 2r is found as: Fcap

σ,x = −2 ·r ·π ·σ1/2.
This force is known as the “Zener pinning force” in the
literature. It should be noted that coefficient 2 is missing
from the original equation of Zener (see [28]), corrected
later by Ashby et al. [29] (see also review [30]).

6. The “interfacial meniscus force”
The equations derived above are based on the assump-
tion that the horizontal liquid/gas interface is not dis-
turbed by the solid particle. In reality, however, it is
usually not the case, and a curved meniscus is formed
around the particle. Although the curved meniscus has
no significant influence on the value of the interfacial
capillary force, it will create the “interfacial meniscus
force” between two particles at the same fluid/fluid in-
terface. The curvature of the meniscus can be caused by
the particle weight in the gravitational field [31–41], or
by the electric field around a charged particle [42, 43].
Only the gravity induced interfacial meniscus force will
be considered here in details.

First, let us analyse the condition that a horizontal
meniscus is formed around a spherical particle in the
gravitational field, in absence of an electric charge on
the surface of the particles. Considering only the bal-
ance of the gravity and buoyancy forces, the following
equality will hold at the equilibrium position of the
particle:

ρ∗ ≡ ρs − ρg

ρl − ρg
= x2

eq · (3 · r − xeq)

4 · r3
(10b)

where ρ is the density of solid (s), liquid (l) and gas (g)
phases.

The meniscus around the particle will be horizontal,
if the equilibrium position of the particle due to the in-
terfacial capillary force (Equation 10a) from the one
hand, and due to the balance of the gravity and buoy-
ancy forces (Equation 10b) from the other hand, will
equal. This condition is equivalent to the equality of
the dimensionless density (ρ∗) to its special value ρ∗

flat.
The expression for ρ∗

flat can be found by substituting
Equation 10a into Equation 10b, as:

ρ∗
flat = 1

4
· (1 + cos �)2 · (2 − cos �) (10c)

Now, let us consider two spherical particles 3 and 4,
separated by a distance of x (x is measured between their
interfaces), at the interface of two fluid phases 1 and 2
(see Fig. 2). When the condition ρ∗ = ρ∗

flat is fulfilled
for two, identical particles (see Fig. 2b), the menisci
around both the particles are flat, and therefore the in-
terfacial energy Gσ of the system will not change as
function of their distance. Thus, as follows from Equa-
tion 2, there is no interfacial meniscus force between
them. However, for the majority of particle/liquid com-

Figure 2 Two, spherical particles 3 and 4 at the interface of two fluid
phases 1 and 2 with identical particles (a), with identical neutral particles
(b) and with different particles (c).

binations the condition ρ∗ = ρ∗
flat is not fulfilled, and

therefore the meniscus around the particles is not flat
(see Figs 2a and c). Therefore, the shape of the meniscus
between two neighbouring particles will be a function
of their separation, i.e. the total interfacial energy Gσ

of the system will be also the function of x. As a con-
sequence, in all cases when ρ∗ �= ρ∗

flat the “interfacial
meniscus force” will arise, being responsible for the co-
agulation of identical particles on liquid surfaces. From
Equation 3 the following equation can be written:

Fmenis
σ,x = Fbridge

σ,x = σ1/2 ·
(

dA2/3

dx
· cos �3/2/1 + dA2/4

dx

· cos �4/2/1 − dA12

dx

)
(11)

where �i/2/1 is the contact angle of phase 2 on phase i
(i = 3 or 4) in the environment of phase 1.

In order to apply Equation 11, first the interfacial
areas A2/3, A2/4 and A1/2 should be derived as func-
tion of x. The interfacial meniscus force was calculated
numerically for the gravitational field [31–33] and for
the electrical field [43]. The analytical solution exists
only when certain approximations are used. The ap-
proximated equation for the gravity induced interfacial
meniscus force between particle 3 with mass m3 and
particle 4 with mass m4 can be written in a simplified
way as [34]:

Fmenis
σ,x

∼= −81 · g2

32 · π
· m3 · m4

x · σ1/2
· (ρ∗

3 − ρ∗
3,flat)

·(ρ∗
4 − ρ∗

4,flat) (12)

where g—the gravitational constant (9.81 m/s2 on the
Earth).

Equation 12 is approximately valid only for small
particles (with radii smaller than 1 mm) [33]. From
Equation 12 one can see that the sign of the interfacial
meniscus force depends on the signs of the two last
terms. If the particles are identical, or similar in a sense
that for both of them (ρ∗ − ρ∗

flat) has the same sign (see
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Fig. 2a), the force will be negative, i.e. attractive. For
dissimilar particles, for which (ρ∗ − ρ∗

flat) have differ-
ent signs (see Fig. 2c), the force will be positive, i.e.
repulsive.

It is interesting to note that among all the interfa-
cial forces, the interfacial meniscus force is the only
one, which is inversely proportional to the interfacial
energy. The reason is that interfaces with lower inter-
facial energies appear to be more curved under the in-
fluence of particles of the same mass, and thus the in-
terfacial meniscus force, arising due to the compensa-
tion of these curved menisci, will be also higher. It is
also important to note that the gravity induced interfa-
cial meniscus force (Equation 12) is the only interfacial
force, disappearing in absence of gravity.

The approximated validity of Equation 12 was
proven experimentally on the surface of ordinary liq-
uids [35–38]. The agglomeration of particles was ob-
served directly on the surface of liquid metals [39, 40]
and even at the liquid metal/slag interface [41]. From
the recorded velocity of the particles the interfacial
meniscus force was estimated and the results have been
found to be in good agreement with the above theory.

The “interfacial meniscus force” was called also as
“lateral capillary force” [33, 38]. To the opinion of the
present author it is important to underline in the name
of this force that it arises only due to the existence of
curved menisci around the particles. If one wants to
specify this force further, the names “gravity induced
interfacial meniscus force”, or “electric field induced
interfacial meniscus force” are suggested in this paper.
The later was also called recently as “electrodipping
force” [43].

Kainuma et al. [44] recently observed that liq-
uid droplets coalesce with unexpectedly high veloc-
ity at grain boundaries. It is possible that the rea-
son of this fast coalescence is the interfacial meniscus
force, acting on liquid droplets along the curved grain
boundaries.

7. The liquid bridge induced interfacial force
In Fig. 2 small solid particles are situated on the surface
of a large liquid phase. When the volume of the liquid
phase is much smaller than that of the solid particles,
this liquid will form a liquid bridge between the parti-
cles. Although Equation 11 remains valid also for this
case, the particular solutions will be very much differ-
ent. That is why it has a sense to define this force by
a different name: the “liquid bridge induced interfacial
force”.

The solution of Equation 11 is possible only numer-
ically, obtained for equal spheres by [45, 46] and for
unequal-sized spheres by [47, 48]. An approximated
solution exists only for equal spheres of radii r, in the
limit of Vliquid → 0 and x → 0 [45]:

Fbridge
σ,x

∼= −2 · π · r · σl/g · cos � (13)

From Equation 13 one can see that the liquid bridge
induced interfacial force at the limit Vliquid → 0 and
x → 0 will be negative, i.e. it will attract the parti-

cles only, if the particles are wetted by the liquid with
a contact angle below 90◦. The liquid bridge induced
interfacial force will be weaker, and the critical contact
angle at which the force changes from being attrac-
tive to repulsive will be also lower when the volume of
the liquid bridge and the distance between the particles
increase.

The liquid bridge induced interfacial force, measured
experimentally in liquid metallic systems [45, 49, 50]
was found to be in good agreement with theory [45].
Also, the relative shrinkage of the sintered sample was
found to be approximately proportional to the theoret-
ically calculated force [46], confirming the validity of
the theoretical equations.

8. The interfacial adhesion force
Let us consider two, solid particles 2 and 3, with a small-
est distance x between their interfaces, within a homo-
geneous fluid phase 1. The two particles will attract
or repulse each other due to the so called “interfacial
adhesion force”. This force is mainly responsible for
agglomeration (clustering) of solid particles in liquids.
In this case the total interfacial energy Gσ contains two
terms, corresponding to the fluid 1/solid 2 and to the
fluid 1/solid 3 interfaces. If the interfacial energies are
treated as constants, and the particles are considered
rigid, Gσ will not be a function of x, and thus the in-
terfacial adhesion force will be zero (see Equation 3).
However, when the two particles appear close to each
other, they will influence the energy of the surface atoms
of each other, i.e. σ1/2 and σ1/3 become functions of x,
and thus the interfacial adhesion force will appear. In
this case, the effective surface areas of the two particles
(A∗

1/2 and A∗
1/3), influenced by each other will always

equal, i.e. A = A∗
1/2 = A∗

1/3. Then, from the second term
of Equation 3:

Fadh
σ,x = −A ·

(
dσ1/2(x)

dx
+ dσ1/3(x)

dx

)
(14)

The distance-dependence of the interfacial energies
can be described as [51, 52]:

σ1/2(x) = σ1/2 + (σ2/3 − σ1/2) ·
(

d

d + x

)2

(15a)

σ1/3(x) = σ1/3 + (σ2/3 − σ1/3) ·
(

d

d + x

)2

(15b)

where d—is the diameter of the atom or molecule in
the liquid.

Now, for simplicity, let us apply Equation 14 for
two, flat particles with parallel areas of A, facing each
other. Then, after substituting Equations 15a–b into
Equation 14 and performing the derivation, the follow-
ing equation is obtained:

Fadh
σ,x = 2 · A · �σ · d2

(d + x)3
(16a)
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TABLE I Geometrical parameters of Equation 16b for some simple cases

Phase 2 Phase 3 Position k n Ref

Plane of area A Plane of area A Parallel 2 · A 3 [56]
Plane of ∞ area Sphere of radius r – 2 · r · π 2 [54]
Sphere of radius r2 Sphere of radius r3 – 2 · π · r2·r3

r2±r3
2 [54]

Cylinder of radius r2 Cylinder of radius r3 Crossing under α* 2 · π ·
√

r2·r3
sin α

2 [55]

∗α—is the angle between the axes of the two cylinders.

with

�σ = 2 · σ2/3 − σ1/2 − σ1/3 (17a)

Equation 16a is a specific form of a more general equa-
tion [3, 53]:

Fadh
σ,x = k · �σ · d2

(d + x)n
(16b)

with the geometrical parameters k and n listed in
Table I.

Comparing Equations 16a–b and the first line of
Table I, one can see that these two equations are iden-
tical. The only deviation between our present results
from the classical results is the definition of parameter
�σ . In opposite to what is derived in Equation 17a [51,
52] the classical result of Derjaguin [55] and Hamaker
[57] is written as (see also [53, 58]):

�σ = σ2/3 − σ1/2 − σ1/3 (17b)

Although the difference between Equations 17a–b
is only in a coefficient 2, these two equations often
lead to different signs of the interfacial adhesion force.
Equation 17b is inadequate, as the simplified method
of �Gσ /�x was applied during its derivation [55, 57,
58], instead of the dGσ /dx, according to Equation 2.
The validity of Equation17a is confirmed by the results
of pushing/engulfment experiments (see [52] and ref-
erences thereof).

It is interesting to note that the generally contradict-
ing Equations 17a and b simplify to the same equation
for the interaction of two, chemically identical particles
(phase 2 = phase 3, i.e. σ2/3 = 0, σ1/2 = σ1/3):

�σ = −2 · σ1/2 (17c)

As follows from Equation 17c, identical particles will
always attract each other. For dissimilar particles it is
not always the case.

9. Conclusions
A general algorithm to derive equations for the interfa-
cial forces has been suggested. Equations for six differ-
ent types of interfacial forces have been derived for rigid
particles, appearing in different situations. The classi-
fication of different interfacial forces is suggested.
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